Robot Obstacle Avoidance Controller Based on Deep Reinforcement Learning

نویسندگان

چکیده

As the core technology in field of mobile robots, development robot obstacle avoidance substantially enhances running stability robots. Built on path planning or guidance, most existing methods underperform with low efficiency complicated and unpredictable environments. In this paper, we propose an method a hierarchical controller based deep reinforcement learning, which can realize more efficient adaptive without planning. The controller, multiple neural networks, contains action selector runner consisting two network strategies single actions. Action selectors each strategy are separately trained simulation environment before being deployed robot. We validated wheeled More than 200 tests yield success rate up to 90%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Monocular Vision based Obstacle Avoidance through Deep Reinforcement Learning

Obstacle avoidance is a fundamental requirement for autonomous robots which operate in, and interact with, the real world. When perception is limited to monocular vision avoiding collision becomes significantly more challenging due to the lack of 3D information. Conventional path planners for obstacle avoidance require tuning a number of parameters and do not have the ability to directly benefi...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Reinforcement Learning for Robot Obstacle Avoidance and Wall Following

Reinforcement learning approach is learning how to map environment situations to actions, to maximize a reward signal. In this project, the SARSA(l) algorithm is applied to teach a robot to follow a wall and avoid running into obstacles. The robot is equipped with a laser scanner and odometry to perform the learning. The robot senses environment situation from the laser readings and decides whi...

متن کامل

Obstacle Avoidance through Reinforcement Learning

A method is described for generating plan-like, reflexive, obstacle avoidance behaviour in a mobile robot. The experiments reported here use a simulated vehicle with a primitive range sensor. Avoidance behaviour is encoded as a set of continuous functions of the perceptual input space. These functions are stored using CMACs and trained by a variant of Barto and Sutton's adaptive critic algorith...

متن کامل

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Sensors

سال: 2022

ISSN: ['1687-725X', '1687-7268']

DOI: https://doi.org/10.1155/2022/4194747